Power Reduction Using Parallelism and Reduced Supply Voltage
ELEC 6270 Final Report
Clint Patterson

April 17, 2009
Abstract

The need for energy and power reduction has fluctuated throughout the history of electronic device development, but in recent times this reduction effort has emerged as one of the most urgent needs to overcome limiting factors in VLSI development. Without any effort to reduce power dissipation on modern designs, the heat produced by any reasonable sized chip would more than likely have a destructively negative effect on the physical composition of the chip, and thus degrade or erase any performance it provides.

There are myriad areas and approaches where power reduction can be attempted; the scope of this paper will be power reduction in a 32-bit adder through reducing supply voltage while using multiple adder logic cores in parallel. The basic goal is to reduce the supply voltage so that each logic core runs at 1/N the speed of a reference design with standard supply voltage; the N multiple cores provide the ability to maintain original throughput of a reference design with full supply voltage. For this work N = 2 is used.

The downside to this low-power design scheme is that increased delay is experienced; the delay time between clocking in new arguments and producing a result increases by N (doubles); the initialization time experiences a similar increase by N times. These added delays arise because although one of the cores will be producing a result at each clock period, the overall time per operation is still increased by N times. The throughput remains constant with the reference design, however.
For this work, a reference design and a low-power design were first created in VHDL. These designs were both verified functionally using ModelSim, and then converted to Verilog files with Leonardo. Supply voltage calculation was then performed to determine which values would give meaningful results for power analysis performed using Design Architect and Eldo.

Design Detail

The reference design for comparison in this work is simply a 32-bit adder with a frequency of F that has clocked buffers on each side of it (similar to a single adder below); calculation time takes 1/F seconds, with F results calculated/ period. The low-power design presented uses 2 reduced supply voltage 32-bit adders that each use toggling clocks with frequency of F/2; calculation takes 2/F seconds, with 2(F/2) = F results calculated/period. A block diagram for the low-power design can be seen below in Figure 1.
[image: image1.png]A—|
B!

CLK |

TOP_STD

[image: image2.png]A
B

Clk

TOP_CLUDGE

Clk/2

Figure 1 – Standard (Top) and Low-Power (Bottom) Block Diagrams
The two adders and the multiphase clock generator (MPC) are all VHDL components in the top-level entity TOP. Input and output buffers are present at the input and output of each adder to clock in new values. These buffers are provided by internal signals that clock new values depending on the respective divided-down clocks produced by the MPC. VHDL code for each component can be found in Appendix A.

Design Verification

In order to save possible confusion and troubleshooting headaches later in the process, both subcomponents (mpc and adder) were verified to work correctly before being combined in the top-level design. Results for these can be seen in list and wave form in Appendix B – Figure A1, along with their wave views.
For the clock generator, an external clock with a period of 100ns was forced; the generation of twin inverted clocks with period of 200ns is seen to be verified.
For the adder circuit, four different input pair patterns for A and B are tested to guarantee the correct generation of sum and carry out. In each case, the results are verified successfully.
Once the components were verified, both the reference and low-power designs were verified. Both models used input pairs similar to those used for the adder verification. These results can be seen in Appendix B – Figure A2 and A3.
Power Analysis

Initially power analysis was attempted in PowerSim, however it appeared that there is an incompatibility with the low-power design and the method that PowerSim uses; null results of 0.00000… were obtained initially, and then after some alteration and streamlining of the re-verified low-power top-level design it produced a segmentation fault instead.

Rather than investigate the inner working of PowerSim, I determined my time would be better spent using Design Architect and Eldo for my analysis. This required first that supply voltages be determined for each model; in order to determine supply voltages, frequencies had to be selected for each model.
For the purpose of ease in calculation, each model would use an external clock of 100MHz for a 10ns period. Leonardo had calculated the critical delay for each model to allow around 165MHz; I used this value and the 180nm standard 1.8V used for frequency calculation with the formula F = k*(Vdd - Vt)/Vdd, where k is a frequency proportionality constant, and Vt is 0.38V for 180nm. This produced a k = 209.2MHz, which was then used to calculate frequencies at the following voltages:

1.5V = 156MHz

0.9V = 120MHz

0.75V = 100MHz

0.65V = 85MHz

0.5V = 50MHz

These values neglect an alpha power term, it would be discovered however, so these frequency terms are somewhat inflated above their actual values. The 1.5 and 0.9V were chosen for the top model; 1.5V would provide a good amount of slack at 100MHz but provide a decent baseline to measure power from. 0.9V would provide a supply voltage nearer to 100MHz, which reduces the power wasted on slack and shows the resulting power reduction. This value would be a less inflated power measure to compare the low-power numbers against.
The low-power numbers of 0.75V, 0.65V, and 0.5V are too low to meet the 100MHz requirement for a single core after the frequency inflation is taken in mind, but should meet the 50MHz requirement. Through experimentation, the power generated from 0.5V was observed to be orders of magnitude lower. The conclusion was that the borderline case of 50MHz is actually too slow when the false inflation is removed, and thus the result is never produced in time for the clock transition, and thus dynamic power is not dissipated. This voltage was not used for final power analysis then.

The four vector pair used in ModelSim to verify each model was forced on each bit line for the simulation in Design architect/Eldo, and average power was measured. These results can be seen below in Figure 2. The first number in the power reduction is percentage reduction of the low-power scheme versus the 1.5V-supplied standard model and the second value is the reduction seen from 0.9V-supplied standard model.
[image: image3.png]VDD AvgP | Power Reduction
Standard Design 15V IS5ouW -
0.9V 228.3uW -
= 0.75V | 84.3uW | 90.14% / 63.07%
Low Power Design
0.65V | 57.3uW | 93.3% / 74.90%

Figure 2 – Power Analysis Results
Clearly great savings are seen over the 1.5V-supplied standard model, but these numbers are somewhat misleading. Much of this power savings is due to the higher power produced by the standard model by producing the work much faster than it needs to. Once unnecessary speed above 100MHz is marginalized with the 0.9V supply, power savings of ~70% are seen; further saving of nearly 90-93% aren’t nearly as impressive in this light. It is worth noting that the ratio of V1^2/V2^2 for 1.5V and 0.9V is around 2.7, while the actual power savings ratio is near to 3.7. This is an anomaly reportedly seen throughout student tests that remains unexplained, though it may have something to do with the increasing RC time constant through the circuit model.
Comparing low-power results with the more efficient 0.9V standard supply is worthwhile however. In this case the low-power models are probably actually afforded more slack than the standard model. Even so, power reduction of 63% and ~75% is observed.
Conclusion

This project proved through experimentation that implementing a parallel scheme for the functional components of a design and reducing the supply voltage to each parallel component can significantly reduce the power dissipation.

Best results for comparison are against the 1.5V supply, where 60-70% reduction was seen. This is a significant improvement over simply reducing the voltage and proves this scheme to be effective for power reduction.

This project reinforced that time spent verifying a design will usually be 2-3 times time spent creating the design, and time to analyze the results of the design will be an even greater multiple. Also, understanding the tools to be used for analysis and verification is a vital part of the process. In this project, having a better understanding of the Design Architect tool, as well as Eldo and EZ-Wave, would have saved an enormous amount of time.

Appendix A – Verification Result Images

adder.vhd

--N-Bit Adder

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity ADDER is

generic(n:
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);

b:
in std_logic_vector(n-1 downto 0);

cout:
out std_logic;

sum:
out std_logic_vector(n-1 downto 0)

);

end ADDER;

Architecture BEHAV of ADDER is

--signal to buffer result

 signal buff : std_logic_vector(n downto 0);

begin

buff <= ('0' & a) + ('0' & b);

sum <= buff(n-1 downto 0);

cout <= buff(n);

end BEHAV;
mpc.vhd

--Multiphase Clk generator

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity MPC is

port(
clkIn:

in std_logic;

 clkOut:
out std_logic

);

end MPC;

Architecture BEHAV of MPC is

--signal to buffer result

 signal buff: std_logic;

begin

process(clkIn) begin

if(rising_edge(clkIn)) then

if(buff = 'U' OR buff = '0') then

buff <= '1';

elsif(buff = '1') then

buff <= '0';

end if;

end if;

end process;

clkOut <= buff;

end BEHAV;

top_cludge.vhd

--Top-level design - Low power

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity top_cludge is

generic(n:
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);

b:
in std_logic_vector(n-1 downto 0);

clk:
in std_logic;

cout:
out std_logic;

sum:
out std_logic_vector(n-1 downto 0)

);

end top_cludge;

Architecture BEHAV of top_cludge is

--component declaration

component TOP is

generic(n:
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);

b:
in std_logic_vector(n-1 downto 0);

clk:
in std_logic;

cout:
out std_logic;

sum:
out std_logic_vector(n-1 downto 0)

);

end component;

component MPC is

port(
clkIn:

in std_logic;

clkOut:
out std_logic

);

end component;

--clks

 signal clkIn, clkInt: std_logic;

--I/O signals/buffers

 signal Ain, Bin, sumOut: std_logic_vector(n-1 downto 0);

 signal carryOut: std_logic;

begin

top_add : TOP port map (Ain, Bin, clkInt, carryOut, sumOut);

mpc1 : MPC port map (clkIn, clkInt);

clkIn <= clk;

Ain <= A;

Bin <= B;

cout <= CarryOut;

sum <= sumOut;

end BEHAV;

top_std.vhd

--Top-level design

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity TOP_STD is

generic(n:
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);

b:
in std_logic_vector(n-1 downto 0);

clk:
in std_logic;

cout:
out std_logic;

sum:
out std_logic_vector(n-1 downto 0)

);

end TOP_STD;

Architecture BEHAV of TOP_STD is

--component declaration

component ADDER is

generic(n:
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);

b:
in std_logic_vector(n-1 downto 0);

cout:
out std_logic;

sum:
out std_logic_vector(n-1 downto 0)

);

end component;

--input signals/buffers

 signal addAin, addBin: std_logic_vector(n-1 downto 0);

--output signals/buffers

 signal addOut: std_logic_vector(n downto 0);

begin

adder_std : ADDER port map (addAin, addBin, addOut(n), addOut(n-1 downto 0));

process(clk) begin

if(rising_edge(clk)) then

addAin <= a; addBin <= b; cout <= addOut(n); sum <= addOut(n-1 downto 0);

end if;

end process;

end BEHAV;

Appendix B – Verification Result Images

[image: image4.png]niw

deltay

0
100
200
300
400
s00
600
700
800
500

1000

+0
42
42
42
42
42
42
42
42
42
2

/upc/cliouta~

/apc/clkoutb-y,

crorororara
rororororoa

1000
main clock

clockouts
are 200ns
toggled clocks

[image: image5.png]nss

deltay

120
120
240
360
360

4
+
41
+
41
o
+

Jadder/a~y

Lol01010101010101010101010101010
lol01010101010101010101010101010
lol0l010101010101010101010101011
lol0010101010101010101010101011
ln0000000000000000000000000000001
lo0000000000000000000000000000000
00000000000000000000000000000000

Jadder/b

01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
LLLLILILIL L
LI
L1110100100101111111111111111111

Jadder/su—

7adder /cout-y,

U
LLLLLLILLLI L L L
LI
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
L1110100111111111111111111111111

[Spepupyay |

[image: image6.png]<

[image: image7.png]Jioioii0i0ion

DI01010101010

010 10101010}

DI01010101010

10101011 Joo:

I00000B0DB000

I0D00DB0DB0DG0D}

/30000000000

0000DB0DB0D

000000

TOIG1010010)

TOIB10101010]

Tor

T

T

T,

TTTTTTIIIIT

T

111 Joonoo00

TOOAG0AA00

TOOA00000

YT

T

TIIIL

Figure A1 – List verifications for multiphase clock generator (top left) and 32-bit adder (top right), wave view verifications for MPC (middle) and 32-bit adder (bottom)
[image: image8.png]01610 0101010101 .. 0101010101 0101010}DIBBL0101010

| T

[PT0rO1C OTOTOITOTOTOIoroTaroTeT
i, R LI T R R i T T T
!
o000, [fOTeTBTPToToTo P ToTorbToto... oToioibiot... [lolsToinoTolariotaibiomorolon
oo, [FIOTGIGTGIOTGIDGIOTO|OGIOTgIor
! T T T[T 11L...]L0000a0A000. . JoT (LT (LU I
[{o00D6Go00D.. |

[image: image9.png]nss

deltay

0
100
200
220
320
00
s00

100ns clock

41
+
4+
41
41
+
+

J/rop_std/a~

lol01010101010101010101010101010
lol01010101010101010101010101010
lol01010101010101010101010101010
lol01010101010101010101010101011
lol01010101010101010101010101010
lol01010101010101010101010101010
Lo01010101010101010101010101010

result in 100ns.

/rop_std/b

01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101

200ns initialization

J/rop_std/sun-—~

/top_std/cout-y,

U
30000000000000000000000000000000¢
LLLLLLILLLL L LLLLLLLL
LLLLLLIIIILI L
LI
00000000000000000000000000000000
LI L L L L LLLLLLL

croooxa

01 value
01 result
02 value
03 value
02 result
03 result

Figure A2 – List (top) and wave (bottom) verifications for standard top-level model
[image: image10.png]r— — T — T —_— T —_— 1

{10._. 1010101 1010101010101010...}10T0T016{DIO1O10IDIOIBINTOI01010
LI W LT Wy
T L

OBODBO30R0DB0R0A0DB00000D. .- L 11111111111

T0I0101010101010101010101... 1010100 1p1010f0I0I00IoI010j0IL OIGIoIoI010I0}0IRIoIoI0T01a}10
[DI0iBi00I01010I0I0oToI0T0I0IL
TOI0010101010101010 101010101010
LI W LTI G Ty
(JRVRNVEVEVRNYVEVRNVEVEVEI (L A (S SO OO TRVERVEVEVENY] VEVERVIVEVERRIIATS
(VTS YRVRVRVRTNEYVRNYVRNTVRLVETE

>
v
2
K2
>
v
v
v
v
v
4

[image: image11.png]ns

deltay

0
200
220
320
00
420
s00
600
700

100ns clock

4
+a
41
41
+a
41
+a
+a
+a

Srop/asy

lol01010101010101010101010101010
lol01010101010101010101010101010
lol01010101010101010101010101011
lol01010101010101010101010101010
lol01010101010101010101010101010
lol01010101010101010101010101010
lol01010101010101010101010101010
lol01010101010101010101010101010
Lo101010101010101010101010101010

200ns delay for result

Srop/b

01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010101
01010101010101010101010101010111
01010101010101010101010101010111
01010101010101010101010101010111
01010101010101010101010101010111

400ns initial delay

/top/sun—

7top/cout-y,

LLLLLLILLLL L LLLLLLLL
LI
00000000000000000000000000000000
LI L
00000000000000000000000000000001

Forooxkxa

initialization
01 values
02 values
03 values
01 result
04 values
02 result
03 result
0 result

Figure A3 – List (top) and wave (bottom) verifications for low-power top-level model
