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Abstract


The need for energy and power reduction has fluctuated throughout the history of electronic device development, but in recent times this reduction effort has emerged as one of the most urgent needs to overcome limiting factors in VLSI development. Without any effort to reduce power dissipation on modern designs, the heat produced by any reasonable sized chip would more than likely have a destructively negative effect on the physical composition of the chip, and thus degrade or erase any performance it provides.


There are myriad areas and approaches where power reduction can be attempted; the scope of this paper will be power reduction in a 32-bit adder through reducing supply voltage while using multiple adder logic cores in parallel.  The basic goal is to reduce the supply voltage so that each logic core runs at 1/N the speed of a reference design with standard supply voltage; the N multiple cores provide the ability to maintain original throughput of a reference design with full supply voltage.  For this work N = 2 is used.  

The downside to this low-power design scheme is that increased delay is experienced; the delay time between clocking in new arguments and producing a result increases by N (doubles); the initialization time experiences a similar increase by N times.  These added delays arise because although one of the cores will be producing a result at each clock period, the overall time per operation is still increased by N times.  The throughput remains constant with the reference design, however.  
For this work, a reference design and a low-power design were first created in VHDL.  These designs were both verified functionally using ModelSim, and then converted to Verilog files with Leonardo.  Supply voltage calculation was then performed to determine which values would give meaningful results for power analysis performed using Design Architect and Eldo.

Design Detail


The reference design for comparison in this work is simply a 32-bit adder with a frequency of F that has clocked buffers on each side of it (similar to a single adder below); calculation time takes 1/F seconds, with F results calculated/ period.  The low-power design presented uses 2 reduced supply voltage 32-bit adders that each use toggling clocks with frequency of F/2; calculation takes 2/F seconds, with 2(F/2) = F results calculated/period.  A block diagram for the low-power design can be seen below in Figure 1.
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Figure 1 – Standard (Top) and Low-Power (Bottom) Block Diagrams 
The two adders and the multiphase clock generator (MPC) are all VHDL components in the top-level entity TOP.  Input and output buffers are present at the input and output of each adder to clock in new values.  These buffers are provided by internal signals that clock new values depending on the respective divided-down clocks produced by the MPC.  VHDL code for each component can be found in Appendix A.

Design Verification


In order to save possible confusion and troubleshooting headaches later in the process, both subcomponents (mpc and adder) were verified to work correctly before being combined in the top-level design. Results for these can be seen in list and wave form in Appendix B – Figure A1, along with their wave views.
For the clock generator, an external clock with a period of 100ns was forced; the generation of twin inverted clocks with period of 200ns is seen to be verified.  
For the adder circuit, four different input pair patterns for A and B are tested to guarantee the correct generation of sum and carry out.  In each case, the results are verified successfully.  
Once the components were verified, both the reference and low-power designs were verified.  Both models used input pairs similar to those used for the adder verification. These results can be seen in Appendix B – Figure A2 and A3.
Power Analysis


Initially power analysis was attempted in PowerSim, however it appeared that there is an incompatibility with the low-power design and the method that PowerSim uses; null results of 0.00000… were obtained initially, and then after some alteration and streamlining of the re-verified low-power top-level design it produced a segmentation fault instead.

Rather than investigate the inner working of PowerSim, I determined my time would be better spent using Design Architect and Eldo for my analysis.  This required first that supply voltages be determined for each model; in order to determine supply voltages, frequencies had to be selected for each model.
For the purpose of ease in calculation, each model would use an external clock of 100MHz for a 10ns period.  Leonardo had calculated the critical delay for each model to allow around 165MHz; I used this value and the 180nm standard 1.8V used for frequency calculation with the formula F = k*(Vdd - Vt)/Vdd, where k is a frequency proportionality constant, and Vt is 0.38V for 180nm.  This produced a k = 209.2MHz, which was then used to calculate frequencies at the following voltages:

1.5V = 156MHz

0.9V = 120MHz

0.75V = 100MHz

0.65V = 85MHz

0.5V = 50MHz

These values neglect an alpha power term, it would be discovered however, so these frequency terms are somewhat inflated above their actual values.  The 1.5 and 0.9V were chosen for the top model; 1.5V would provide a good amount of slack at 100MHz but provide a decent baseline to measure power from.  0.9V would provide a supply voltage nearer to 100MHz, which reduces the power wasted on slack and shows the resulting power reduction.  This value would be a less inflated power measure to compare the low-power numbers against.
The low-power numbers of 0.75V, 0.65V, and 0.5V are too low to meet the 100MHz requirement for a single core after the frequency inflation is taken in mind, but should meet the 50MHz requirement.  Through experimentation, the power generated from 0.5V was observed to be orders of magnitude lower.  The conclusion was that the borderline case of 50MHz is actually too slow when the false inflation is removed, and thus the result is never produced in time for the clock transition, and thus dynamic power is not dissipated.  This voltage was not used for final power analysis then.

The four vector pair used in ModelSim to verify each model was forced on each bit line for the simulation in Design architect/Eldo, and average power was measured.  These results can be seen below in Figure 2. The first number in the power reduction is percentage reduction of the low-power scheme versus the 1.5V-supplied standard model and the second value is the reduction seen from 0.9V-supplied standard model.
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Figure 2 – Power Analysis Results 
Clearly great savings are seen over the 1.5V-supplied standard model, but these numbers are somewhat misleading.  Much of this power savings is due to the higher power produced by the standard model by producing the work much faster than it needs to.  Once unnecessary speed above 100MHz is marginalized with the 0.9V supply, power savings of ~70% are seen; further saving of nearly 90-93% aren’t nearly as impressive in this light.  It is worth noting that the ratio of V1^2/V2^2 for 1.5V and 0.9V is around 2.7, while the actual power savings ratio is near to 3.7.  This is an anomaly reportedly seen throughout student tests that remains unexplained, though it may have something to do with the increasing RC time constant through the circuit model.
Comparing low-power results with the more efficient 0.9V standard supply is worthwhile however.  In this case the low-power models are probably actually afforded more slack than the standard model.  Even so, power reduction of 63% and ~75% is observed.
Conclusion


This project proved through experimentation that implementing a parallel scheme for the functional components of a design and reducing the supply voltage to each parallel component can significantly reduce the power dissipation.

Best results for comparison are against the 1.5V supply, where 60-70% reduction was seen.  This is a significant improvement over simply reducing the voltage and proves this scheme to be effective for power reduction.

This project reinforced that time spent verifying a design will usually be 2-3 times time spent creating the design, and time to analyze the results of the design will be an even greater multiple.  Also, understanding the tools to be used for analysis and verification is a vital part of the process.  In this project, having a better understanding of the Design Architect tool, as well as Eldo and EZ-Wave, would have saved an enormous amount of time.

Appendix A – Verification Result Images

adder.vhd

--N-Bit Adder

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity ADDER is

generic(n: 
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);


b:
in std_logic_vector(n-1 downto 0);


cout:
out std_logic;


sum:
out std_logic_vector(n-1 downto 0)


);

end ADDER;

Architecture BEHAV of ADDER is

--signal to buffer result

  signal buff : std_logic_vector(n downto 0);

begin


buff <= ('0' & a) + ('0' & b);


sum <= buff(n-1 downto 0);


cout <= buff(n);

end BEHAV;
mpc.vhd

--Multiphase Clk generator

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity MPC is

port(
clkIn: 

in std_logic;


    clkOut:
out std_logic


);

end MPC;

Architecture BEHAV of MPC is

--signal to buffer result

  signal buff: std_logic;

begin

process(clkIn) begin


if(rising_edge(clkIn)) then



if(buff = 'U' OR buff = '0') then




buff <= '1';



elsif(buff = '1') then




buff <= '0';



end if;


end if;

end process;

clkOut <= buff;

end BEHAV;

top_cludge.vhd

--Top-level design - Low power

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity top_cludge is

generic(n: 
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);


b:
in std_logic_vector(n-1 downto 0);


clk:
in std_logic;


cout:
out std_logic;


sum:
out std_logic_vector(n-1 downto 0)


);

end top_cludge;

Architecture BEHAV of top_cludge is

--component declaration

component TOP is

generic(n: 
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);



b:
in std_logic_vector(n-1 downto 0);



clk:
in std_logic;



cout:
out std_logic;



sum:
out std_logic_vector(n-1 downto 0)



);

end component;

component MPC is

port(
clkIn: 

in std_logic;


clkOut:
out std_logic


);

end component;

--clks

  signal clkIn, clkInt: std_logic;

--I/O signals/buffers

  signal Ain, Bin, sumOut: std_logic_vector(n-1 downto 0);

  signal carryOut: std_logic;

begin

top_add : TOP port map (Ain, Bin, clkInt, carryOut, sumOut);

mpc1 : MPC port map (clkIn, clkInt);

clkIn <= clk; 

Ain <= A;

Bin <= B;

cout <= CarryOut;

sum <= sumOut;

end BEHAV;

top_std.vhd

--Top-level design

--

--Clint Patterson

--Low Power Final Project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity TOP_STD is

generic(n: 
integer := 32);

port(
a:
in std_logic_vector(n-1 downto 0);



b:
in std_logic_vector(n-1 downto 0);



clk:
in std_logic;



cout:
out std_logic;



sum:
out std_logic_vector(n-1 downto 0)



);

end TOP_STD;

Architecture BEHAV of TOP_STD is

--component declaration

component ADDER is


generic(n: 
integer := 32);


port(
a:
in std_logic_vector(n-1 downto 0);




b:
in std_logic_vector(n-1 downto 0);




cout:
out std_logic;




sum:
out std_logic_vector(n-1 downto 0)




);

end component;

--input signals/buffers

  signal addAin, addBin: std_logic_vector(n-1 downto 0);

--output signals/buffers

  signal addOut: std_logic_vector(n downto 0);

begin

adder_std : ADDER port map (addAin, addBin, addOut(n), addOut(n-1 downto 0));

process(clk) begin


if(rising_edge(clk)) then



addAin <= a; addBin <= b; cout <= addOut(n); sum <= addOut(n-1 downto 0);


end if;

end process;

end BEHAV;

Appendix B – Verification Result Images
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Figure A1 – List verifications for multiphase clock generator (top left) and 32-bit adder (top right), wave view verifications for MPC (middle) and 32-bit adder (bottom)
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Figure A2 – List (top) and wave (bottom) verifications for standard top-level model
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Figure A3 – List (top) and wave (bottom) verifications for low-power top-level model
